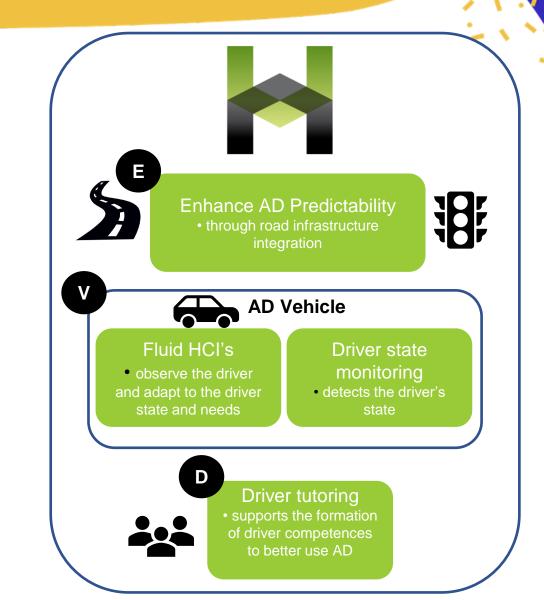





#### PROJECT GOAL AND OBJECTIVES






"Solutions need to be developed and they have to ensure both a safe transfer between use cases with different automation levels and that drivers always have a very clear understanding about the degree of automation enabled in each situation." (EU H2020 DT-ART-03 call text)



# HOLISTIC APPROACH FOR SAFE AND ACCEPTABLE DRIVER ROLE

- Enhance AD through road infrastructure integration
  - To facilitate getting driver back in the loop
  - Allow better planning for NDRA
  - Increase availability and continuity
- Improve the AD Vehicle
  - Driver monitoring
    - Driver state during SAE L2, SAE L3 versus manual driving
  - Mutual adaptive "fluid" Human Computer Interactions
    - Reduce complexity and required knowledge for the driver
    - Warn or Help only when and how needed
- Strengthen competences of the AD User / Driver
  - Onboard tutoring provides
  - 2022 11 14 Lessons before and reminders during and after the drive
    - Active feedback in case of inconsistent actions





## **CONSORTIUM PARTNERS**











2022 11 14



University of Ljubljana





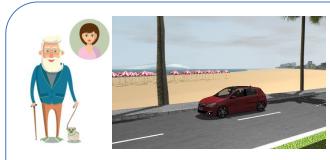










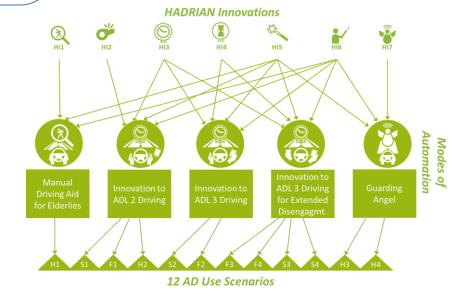









# OPPORTUNITIES FOR AUTOMATED DRIVING VEHICLES TO SUPPORT MOBILITY NEEDS: DEFINITION OF USE SCENARIOS




Harold, an elderly driver



Florence, an business owner





# Results: Driver Status Monitoring

- - Driver status monitoring
    - Driver state assessment studies with 235 participants covering various age groups, experience, and gender
    - Manual categorizations
    - Will be made available as dataset
- Developed 6 distinct sub-models for prediction of:
  - **Fatique**
  - Hands on steering wheel
  - Visual distraction
  - Engagement in secondary task
  - **Drowsiness**
  - **Facial Expression**
- Developed integrated sensors on steering wheel for reliable hands-on-wheel detection
  - Use in field-demonstrations
- Applied to trucks

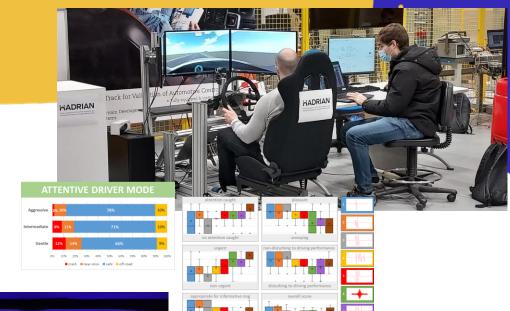






Hands on steering detection







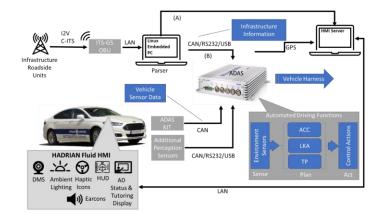

## Results: HMI

- Increasing the predictability of the automated drive
  - What AD predictability time horizons would be needed to be helpful?
  - How helpful is ADL 3 predictability to improve the takeover?
- How could ambient lighting in the vehicle facilitate ADL mode awareness?
- How can a tutoring application help drivers learn to interact with the AD functions
  - Driver state dependent feedback to build competences and mental model
- Under what conditions can a guarding angel support the safety of manual driving?
- Developed optimized AD sound designs
  - Develop standardizable automation driving alerting framework
  - Measured effectivity of a turning seat to increase AD mode awareness

•2022 1 Peveloping a human reliability calculator









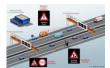

# Road Information Infrastructure – Vehicle -







Display of AD predictability and guarantee transition duration




## **HADRIAN Demonstrators**











- 1. Head-Up display (HUD) with critical timing information for transition
- 2. HADRIAN predictability and tutoring for automated driving (AD) on a tablet
- 3. Steering wheel feedback
- 4. Ambient lighting
- 5. Hands-on-wheel driver monitoring system (DMS) camera
- 6. Eye-gaze DMS cameras
- 7. Auditory cues

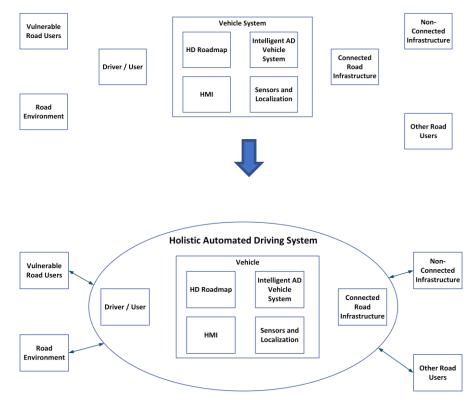




- . Hands-on-wheel DMS camera
- 2. Ambient lighting
- 3. HADRIAN AD Display
- 4. Auditory cues
- 5. HUD
- 6. Haptic steering wheel feedback






- L. Human-Centered fluid-Human-Machine Interface
- 2. Auditory Cues
- 3. Ambient lighting
- 4. Truck Driver Monitoring System
- 5. Basic Fit2drive App
- 6. Haptic steering wheel feedback



## Recommendations from the HADRIAN Perspective



- Create organizational structures for joint development of automated driving systems that include vehicles, road infrastructure, and drivers
  - Harmonizing AD functionality across brands (engage, disengage, availability,..)
  - Enabling the possibility for common education and training drivers across multiple brands
  - Enabling the vehicle to rely on road infrastructure to reliably extend the vehicles sensor horizon
    - Sensors, messages, networks
  - Allow for prediction of automated driving availability and display to the driver
  - Allow for guaranteed minimum durations of transition duration from automated to manual driving





# Thank you!











traconference.eu

#### **HOSTED AND ORGANISED BY:**

### **CO-ORGANISED BY**





#### **IN COOPERATION WITH:**









### **TOGETHER WITH:**















